40. **Graphs** A sprinter walks up to the starting blocks at a constant speed and positions herself for the start of the race. She waits until she hears the starting pistol go off, and then accelerates rapidly until she attains a constant velocity. She maintains this velocity until she crosses the finish line, and then she slows down to a walk, taking more time to slow down than she did to speed up at the beginning of the race. Sketch a velocity-time and a position-time graph to represent her motion. Draw them one above the other on the same time scale. Indicate on your \(p-t \) graph where the starting blocks and finish line are.

![Velocity-Time Graph](image)

41. **Critical Thinking** Describe how you could calculate the acceleration of an automobile. Specify the measuring instruments and the procedures that you would use.

One person reads a stopwatch and calls out time intervals. Another person reads the speedometer at each time and records it. Plot speed versus time and find the slope.

Practice Problems

3.3 Free Fall

Pages 72–75

page 74

42. A construction worker accidentally drops a brick from a high scaffold.

a. What is the velocity of the brick after 4.0 s?

 Say upward is the positive direction.

 \[v_f = v_i + at, \quad a = -g = -9.80 \text{ m/s}^2 \]

 \[v_i = 0.0 \text{ m/s} + (-9.80 \text{ m/s}^2)(4.0 \text{ s}) \]

 \[= -39 \text{ m/s when the upward direction is positive} \]

b. How far does the brick fall during this time?

 \[s = v_i t + \frac{1}{2} at^2 \]

 \[= 0 + \left(\frac{1}{2}\right)(-9.80 \text{ m/s}^2)(4.0 \text{ s})^2 \]

 \[= -78 \text{ m} \]

 The brick falls 78 m.

43. Suppose for the previous problem you choose your coordinate system so that the opposite direction is positive.
Chapter 3 continued

a. What is the brick’s velocity after 4.0 s?

Now the positive direction is downward.

\[v_f = v_i + at, \ a = g = 9.80 \text{ m/s}^2 \]

\[v_f = 0.0 \text{ m/s} + (9.80 \text{ m/s}^2)(4.0 \text{ s}) \]

\[= +39 \text{ m/s} \text{ when the downward direction is positive} \]

b. How far does the brick fall during this time?

\[d = v_i t + \frac{1}{2}at^2, \ a = g = 9.80 \text{ m/s}^2 \]

\[= (0.0 \text{ m/s})(4.0 \text{ s}) + \]

\[\left(\frac{1}{2}\right)(9.80 \text{ m/s}^2)(4.0 \text{ s})^2 \]

\[= +78 \text{ m} \]

The brick still falls 78 m.

44. A student drops a ball from a window 3.5 m above the sidewalk. How fast is it moving when it hits the sidewalk?

\[v_f^2 = v_i^2 + 2ad, \ a = g \text{ and } v_i = 0 \]

so \[v_f = \sqrt{2gd} \]

\[= \sqrt{(2)(9.80 \text{ m/s}^2)(3.5 \text{ m})} \]

\[= 8.3 \text{ m/s} \]

45. A tennis ball is thrown straight up with an initial speed of 22.5 m/s. It is caught at the same distance above the ground.

a. How high does the ball rise?

\[a = -g, \text{ and at the maximum height, } v_f = 0 \]

\[v_f^2 = v_i^2 + 2ad \text{ becomes} \]

\[v_i^2 = 2gd \]

\[d = \frac{v_i^2}{2g} = \frac{(22.5 \text{ m/s})^2}{(2)(9.80 \text{ m/s}^2)} = 25.8 \text{ m} \]

b. How long does the ball remain in the air? Hint: The time it takes the ball to rise equals the time it takes to fall.

Calculate time to rise using \[v_f = v_i + at, \text{ with } a = -g \text{ and } v_f = 0 \]

\[t = \frac{v_i}{g} = \frac{22.5 \text{ m/s}}{9.80 \text{ m/s}^2} = 2.30 \text{ s} \]

The time to fall equals the time to rise, so the time to remain in the air is

\[t_{\text{air}} = 2t_{\text{rise}} = (2)(2.30 \text{ s}) = 4.60 \text{ s} \]

46. You decide to flip a coin to determine whether to do your physics or English homework first. The coin is flipped straight up.

a. If the coin reaches a high point of 0.25 m above where you released it, what was its initial speed?
\[v_f^2 = v_i^2 + 2aΔd \]
\[v_i = \sqrt{v_f^2 + 2gΔd} \text{ where } a = -g \]
and \(v_i = 0 \) at the height of the toss, so
\[v_i = \sqrt{(0.0 \text{ m/s})^2 + (2)(9.80 \text{ m/s}^2)(0.25 \text{ m})} \]
\[= 2.2 \text{ m/s} \]

b. If you catch it at the same height as you released it, how much time did it spend in the air?
\[v_f = v_i + at \text{ where } a = -g \]
\[v_i = 2.2 \text{ m/s and} \]
\[v_f = -2.2 \text{ m/s} \]
\[t = \frac{v_f - v_i}{-g} \]
\[= \frac{-2.2 \text{ m/s} - 2.2 \text{ m/s}}{-9.80 \text{ m/s}^2} \]
\[= 0.45 \text{ s} \]

Section Review

3.3 Free Fall

pages 72–75

page 75

47. **Maximum Height and Flight Time** Acceleration due to gravity on Mars is about one-third that on Earth. Suppose you throw a ball upward with the same velocity on Mars as on Earth.

a. How would the ball’s maximum height compare to that on Earth?
 At maximum height, \(v_f = 0 \),
 so \(d_f = \frac{v_i^2}{2g} \) or three times higher.

b. How would its flight time compare?
 Time is found from \(d_f = \frac{1}{2}gt_f^2 \), or
 \[t_f = \sqrt{\frac{2d_f}{g}} \]
 Distance is multiplied by 3 and \(g \) is divided by 3,
 so the flight time would be three times as long.

48. **Velocity and Acceleration** Suppose you throw a ball straight up into the air. Describe the changes in the velocity of the ball. Describe the changes in the acceleration of the ball.